Difference between revisions of "Shadowrun Dice"

From Abulafia Random Generator Wiki
Jump to navigation Jump to search
 
Line 23: Line 23:
 
|-
 
|-
 
| of 6 || <sgdisplay iterations="1">[6P], [6P], [6P], [6P], [6P]</sgdisplay>
 
| of 6 || <sgdisplay iterations="1">[6P], [6P], [6P], [6P], [6P]</sgdisplay>
 +
|-
 +
| of 7 || <sgdisplay iterations="1">[7P], [7P], [7P], [7P], [7P]</sgdisplay>
 +
|-
 +
| of 8 || <sgdisplay iterations="1">[8P], [8P], [8P], [8P], [8P]</sgdisplay>
 
|-
 
|-
 
| of  || <sgdisplay iterations="1">[P], [P], [P], [P], [P]</sgdisplay>
 
| of  || <sgdisplay iterations="1">[P], [P], [P], [P], [P]</sgdisplay>
Line 42: Line 46:
 
1,Pool of 5: [5P] hits
 
1,Pool of 5: [5P] hits
 
1,Pool of 6: [6P] hits
 
1,Pool of 6: [6P] hits
 +
1,Pool of 7: [7P] hits
 +
1,Pool of 8: [8P] hits
  
 
;1P
 
;1P
Line 88: Line 94:
 
<!- of 2187 ->
 
<!- of 2187 ->
 
128,0
 
128,0
1,1
+
448,1
1,2
+
672,2
1,3
+
560,3
1,4
+
280,4
1,5
+
84,5
 
14,6
 
14,6
 
1,7
 
1,7
  
 
;8P
 
;8P
1,0
+
<!- of 6561 ->
1,1
+
256,0
1,2
+
1024,1
1,3
+
1792,2
1,4
+
1792,3
1,5
+
1120,4
1,6
+
448,5
1,7
+
112,6
 +
16,7
 
1,8
 
1,8
  
 
;9P
 
;9P
 +
<!- of 19683 ->
 
1,0
 
1,0
 
1,1
 
1,1

Latest revision as of 14:43, 13 February 2015

Dice is great. But this works with Shadowrun. It tells you how many "hits" you got for just about any given size dice pool. (It's pretty hard to get a dice pool of over 30, so I'm planning to go to 40, just in case.)

I might add Legendary dice pools later.

Based on 1d3 to make the numbers smaller, because in Shadowrun a roll of 5 or 6 on a true die is a hit or a success. So for this just a 3 is a success or hit, on a 1d3 true die.

One of the Shadowrun Tools and Plots generators.

  Reload
Generator

Dice Pools

Dice Pool Hits in a given attempt. 5 attempts shown
of 1 <sgdisplay iterations="1">[1P], [1P], [1P], [1P], [1P]</sgdisplay>
of 2 <sgdisplay iterations="1">[2P], [2P], [2P], [2P], [2P]</sgdisplay>
of 3 <sgdisplay iterations="1">[3P], [3P], [3P], [3P], [3P]</sgdisplay>
of 4 <sgdisplay iterations="1">[4P], [4P], [4P], [4P], [4P]</sgdisplay>
of 5 <sgdisplay iterations="1">[5P], [5P], [5P], [5P], [5P]</sgdisplay>
of 6 <sgdisplay iterations="1">[6P], [6P], [6P], [6P], [6P]</sgdisplay>
of 7 <sgdisplay iterations="1">[7P], [7P], [7P], [7P], [7P]</sgdisplay>
of 8 <sgdisplay iterations="1">[8P], [8P], [8P], [8P], [8P]</sgdisplay>
of <sgdisplay iterations="1">[P], [P], [P], [P], [P]</sgdisplay>
of <sgdisplay iterations="1">[P], [P], [P], [P], [P]</sgdisplay>
of <sgdisplay iterations="1">[P], [P], [P], [P], [P]</sgdisplay>
of <sgdisplay iterations="1">[P], [P], [P], [P], [P]</sgdisplay>

<sgtable>

main

1,Pool of 1: [1P] hits 1,Pool of 2: [2P] hits 1,Pool of 3: [3P] hits 1,Pool of 4: [4P] hits 1,Pool of 5: [5P] hits 1,Pool of 6: [6P] hits 1,Pool of 7: [7P] hits 1,Pool of 8: [8P] hits

1P

2,0 1,1

2P

4,0 4,1 1,2

3P

8,0 12,1 6,2 1,3

4P

<!- of 81 -> 16,0 32,1 24,2 8,3 1,4

5P

<!- of 243 -> 32,0 80,1 80,2 40,3 10,4 1,5

6P

<!- of 729 -> 64,0 192,1 240,2 160,3 60,4 12,5 1,6

7P

<!- of 2187 -> 128,0 448,1 672,2 560,3 280,4 84,5 14,6 1,7

8P

<!- of 6561 -> 256,0 1024,1 1792,2 1792,3 1120,4 448,5 112,6 16,7 1,8

9P

<!- of 19683 -> 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

</sgtable>